Automation Definition

admin
Automation Definition Average ratng: 4,1/5 2203 reviews

.Automation, or Labor-saving technology is the technology by which a process or procedure is performed with minimal human assistance. Automation or automatic control is the use of various for operating equipment such as machinery, processes in factories, boilers and heat treating ovens, switching on telephone networks, steering and stabilization of ships, aircraft and other applications and vehicles with minimal or reduced human intervention.Automation covers applications ranging from a household controlling a boiler, to a large industrial control system with tens of thousands of input measurements and output control signals. In control complexity, it can range from simple on-off control to multi-variable high-level algorithms.In the simplest type of an automatic, a controller compares a measured value of a process with a desired set value, and processes the resulting error signal to change some input to the process, in such a way that the process stays at its set point despite disturbances. This closed-loop control is an application of negative feedback to a system. The mathematical basis of was begun in the 18th century and advanced rapidly in the 20th.Automation has been achieved by various means including mechanical, electrical, electronic devices and, usually in combination.

Fueled by bots, basic automation removes the need to manually perform repetitive and rules-based tasks involving structured data. IBM uses business process management (BPM) libraries and workflow software with select robotic process automation (RPA) capabilities for faster implementation to help you realize benefits more quickly.

Complicated systems, such as modern factories, and typically use all these combined techniques. Contents.Open-loop and closed-loop (feedback) control Fundamentally, there are two types of control loop; open loop control, and closed loop control.In open loop control, the control action from the controller is independent of the 'process output' (or 'controlled process variable'). A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building. (The control action is the switching the boiler off and on.

The process output is the building temperature).In closed-loop control, the control action from the controller is dependent on the process output. In the case of the boiler analogy, this would include a temperature sensor to monitor the building temperature, and thereby feed a signal back to the controller to ensure it maintains the building at the temperature set on the thermostat. A closed loop controller, therefore, has a feedback loop which ensures the controller exerts a control action to give a process output equal to the 'Reference input' or 'set point'. For this reason, closed-loop controllers are also called feedback controllers.The definition of a closed loop control system according to the British Standard Institution is 'a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero.' Likewise, a Feedback Control System is a system which tends to maintain a prescribed relationship of one system variable to another by comparing functions of these variables and using the difference as a means of control.The advanced type of automation that revolutionized manufacturing, aircraft, communications, and other industries, is feedback control, which is usually continuous and involves taking measurements using a and making calculated adjustments to keep the measured variable within a set range. The theoretical basis of closed-loop automation is.

Main article: Discrete control (on/off) One of the simplest types of control is on-off control. An example is a thermostat used on household appliances which either opens or closes an electrical contact. (Thermostats were originally developed as true feedback-control mechanisms rather than the on-off common household appliance thermostat.)Sequence control, in which a programmed sequence of discrete operations is performed, often based on system logic that involves system states. An elevator control system is an example of sequence control.PID controller. Main article:Sequential control may be either to a fixed sequence or to a logical one that will perform different actions depending on various system states. An example of an adjustable but otherwise fixed sequence is a timer on a lawn sprinkler.States refer to the various conditions that can occur in a use or sequence scenario of the system. An example is an elevator, which uses logic based on the system state to perform certain actions in response to its state and operator input.

For example, if the operator presses the floor n button, the system will respond depending on whether the elevator is stopped or moving, going up or down, or if the door is open or closed, and other conditions.Early development of sequential control was, by which engage electrical contacts which either start or interrupt power to a device. Relays were first used in telegraph networks before being developed for controlling other devices, such as when starting and stopping industrial-sized electric motors or opening and closing. Using relays for control purposes allowed event-driven control, where actions could be triggered out of sequence, in response to external events. These were more flexible in their response than the rigid single-sequence. More complicated examples involved maintaining safe sequences for devices such as swing bridge controls, where a lock bolt needed to be disengaged before the bridge could be moved, and the lock bolt could not be released until the safety gates had already been closed.The total number of relays and cam timers can number into the hundreds or even thousands in some factories. Early techniques and languages were needed to make such systems manageable, one of the first being, where diagrams of the interconnected relays resembled the rungs of a ladder. Special computers called were later designed to replace these collections of hardware with a single, more easily re-programmed unit.In a typical hard wired motor start and stop circuit (called a control circuit) a motor is started by pushing a 'Start' or 'Run' button that activates a pair of electrical relays.

The 'lock-in' relay locks in contacts that keep the control circuit energized when the push-button is released. (The start button is a normally open contact and the stop button is normally closed contact.) Another relay energizes a switch that powers the device that throws the motor starter switch (three sets of contacts for three-phase industrial power) in the main power circuit. Large motors use high voltage and experience high in-rush current, making speed important in making and breaking contact. This can be dangerous for personnel and property with manual switches. The 'lock-in' contacts in the start circuit and the main power contacts for the motor are held engaged by their respective electromagnets until a 'stop' or 'off' button is pressed, which de-energizes the lock in relay. This state diagram shows how can be used for designing a door system that can only be opened and closedCommonly are added to a control circuit. Suppose that the motor in the example is powering machinery that has a critical need for lubrication.

In this case, an interlock could be added to ensure that the oil pump is running before the motor starts. Timers, limit switches, and electric eyes are other common elements in control circuits.are widely used on compressed air or hydraulic fluid for powering on mechanical components. While motors are used to supply continuous rotary motion, actuators are typically a better choice for intermittently creating a limited range of movement for a mechanical component, such as moving various mechanical arms, opening or closing valves, raising heavy press rolls, applying pressure to presses.Computer control Computers can perform both sequential control and feedback control, and typically a single computer will do both in an industrial application. (PLCs) are a type of special purpose microprocessor that replaced many hardware components such as timers and drum sequencers used in type systems.

General purpose process control computers have increasingly replaced stand-alone controllers, with a single computer able to perform the operations of hundreds of controllers. Process control computers can process data from a network of PLCs, instruments, and controllers in order to implement typical (such as ) control of many individual variables or, in some cases, to implement complex control using multiple inputs and mathematical manipulations. They can also analyze data and create real-time graphical displays for operators and run reports for operators, engineers, and management.Control of an (ATM) is an example of an interactive process in which a computer will perform a logic derived response to a user selection based on information retrieved from a networked database. The ATM process has similarities with other online transaction processes. The different logical responses are called scenarios. Such processes are typically designed with the aid of and, which guide the writing of the software code.

The earliest feedback control mechanism was the water clock invented by Greek engineer Ctesibius (285–222 BC)History Early history. Ctesibius's clepsydra (3rd century BC).It was a preoccupation of the Greeks and Arabs (in the period between about 300 BC and about 1200 AD) to keep accurate track of time. In, about 270 BC, described a float regulator for a, a device not unlike the ball and cock in a modern flush toilet. This was the earliest feedback controlled mechanism. The appearance of the mechanical clock in the 14th century made the water clock and its feedback control system obsolete.The brothers, in their (850 AD), described a number of automatic controls. Two-step level controls for fluids, a form of discontinuous, was developed by the Banu Musa brothers.

They also described a. Industrial Revolution in Western Europe The introduction of, or self-driven machines advanced grain mills, furnaces, boilers, and the created a new requirement for automatic control systems including (invented in 1624; see ), (1681), (1700) and devices. Another control mechanism was used to tent the sails of windmills. It was patented by Edmund Lee in 1745.

Also in 1745, invented the first automated loom. The design of feedback control systems up through the Industrial Revolution was by trial-and-error, together with a great deal of engineering intuition. Thus, it was more of an art than a science.

In the mid-19th century mathematics was first used to analyze the stability of feedback control systems. Since mathematics is the formal language of automatic control theory, we could call the period before this time the prehistory of control theory.In 1771 invented the first fully automated spinning mill driven by water power, known at the time as the.

An automatic flour mill was developed by in 1785, making it the first completely automated industrial process. Are a technology created during the 1700s used to promote automation.The, which was invented by in the seventeenth century, was used to adjust the gap between. Another centrifugal governor was used by a Mr. Bunce of England in 1784 as part of a model. The centrifugal governor was adopted by James Watt for use on a steam engine in 1788 after Watt's partner Boulton saw one at a flour mill were building.The governor could not actually hold a set speed; the engine would assume a new constant speed in response to load changes. The governor was able to handle smaller variations such as those caused by fluctuating heat load to the boiler.

Also, there was a tendency for oscillation whenever there was a speed change. As a consequence, engines equipped with this governor were not suitable for operations requiring constant speed, such as cotton spinning.Several improvements to the governor, plus improvements to valve cut-off timing on the steam engine, made the engine suitable for most industrial uses before the end of the 19th century. Advances in the steam engine stayed well ahead of science, both thermodynamics and.The governor received relatively little scientific attention until published a paper that established the beginning of a theoretical basis for understanding control theory. Development of the electronic amplifier during the 1920s, which was important for long-distance telephony, required a higher signal to noise ratio, which was solved by negative feedback noise cancellation.

This and other telephony applications contributed to control theory. In the 1940s and 1950s, German mathematician developed the theory of discontinuous automatic controls, which found military applications during the to and aircraft. 20th century was introduced with factory, which underwent rapid adaption from 1900 through the 1920s. Central electric power stations were also undergoing rapid growth and operation of new high-pressure boilers, steam turbines and electrical substations created a large demand for instruments and controls. Central control rooms became common in the 1920s, but as late as the early 1930s, most process control was on-off.

Operators typically monitored charts drawn by recorders that plotted data from instruments. To make corrections, operators manually opened or closed valves or turned switches on or off. Control rooms also used color-coded lights to send signals to workers in the plant to manually make certain changes.Controllers, which were able to make calculated changes in response to deviations from a set point rather than on-off control, began being introduced the 1930s.

Controllers allowed manufacturing to continue showing productivity gains to offset the declining influence of factory electrification.Factory productivity was greatly increased by electrification in the 1920s. Manufacturing productivity growth fell from 5.2%/yr 1919–29 to 2.76%/yr 1929–41. Alexander Field notes that spending on non-medical instruments increased significantly from 1929–33 and remained strong thereafter.The First and Second World Wars saw major advancements in the field of. Automated pharmacology productionBefore automation many chemicals were made in batches. In 1930, with the widespread use of instruments and the emerging use of controllers, the founder of Dow Chemical Co.

Was advocating.Self-acting machine tools that displaced hand dexterity so they could be operated by boys and unskilled laborers were developed by in the 1840s. Were automated with (NC) using punched paper tape in the 1950s. This soon evolved into computerized numerical control (CNC).Today extensive automation is practiced in practically every type of manufacturing and assembly process. Some of the larger processes include electrical power generation, oil refining, chemicals, steel mills, plastics, cement plants, fertilizer plants, pulp and paper mills, automobile and truck assembly, aircraft production, glass manufacturing, natural gas separation plants, food and beverage processing, canning and bottling and manufacture of various kinds of parts. Robots are especially useful in hazardous applications like automobile spray painting.

Robots are also used to assemble electronic circuit boards. Automotive welding is done with robots and automatic welders are used in applications like pipelines.Space/computer age With the advent of the space age in 1957, controls design, particularly in the United States, turned away from the frequency-domain techniques of classical control theory and backed into the differential equation techniques of the late 19th century, which were couched in the time domain. During the 1940s and 1950s, German mathematician developed the theory of discontinuous automatic control, which became widely used in such as,. Through Flugge-Lotz and others, the modern era saw time-domain design for (1961), (1960), and (1962), (1969), and (1974), and the (1983).Advantages and disadvantages Perhaps the most cited advantage of automation in industry is that it is associated with faster production and cheaper labor costs. Another benefit could be that it replaces hard, physical, or monotonous work. Additionally, tasks that take place in hazardous environments or that are otherwise beyond human capabilities can be done by machines, as machines can operate even under extreme temperatures or in atmospheres that are radioactive or toxic. They can also be maintained with simple quality checks.

However, at the time being, not all tasks can be automated, and some tasks are more expensive to automate than others. Initial costs of installing the machinery in factory settings are high, and failure to maintain a system could result in the loss of the product itself. This section possibly contains.

Please by the claims made and adding. Statements consisting only of original research should be removed.

( March 2018) Increased automation often cause workers to feel anxious about losing their jobs as technology renders their skills or experience unnecessary. Early in the, when inventions like the were making some job categories expendable, workers forcefully resisted these changes., for instance, were English textile workers who protested the introduction of weaving machines by destroying them. More recently, some residents of Chandler, Arizona, have slashed tires and pelted rocks at driver-less cars, in protest over the cars' perceived threat to human safety and job prospects.The relative anxiety about automation reflected in opinion polls seems to correlate closely with the strength of organized labor in that region or nation. For example, while a study by the indicated that 72% of Americans are worried about increasing automation in the workplace, 80% of Swedes see automation and as a good thing, due to the country's still-powerful unions and a more robust national safety net.In the United States, 47% of all current jobs have the potential to be fully automated by 2033, according to the research of experts and Michael Osborne.

Furthermore, wages and educational attainment appear to be strongly negatively correlated with an occupation's risk of being automated. Even highly skilled professional jobs like a, are at risk of automation.Prospects are particularly bleak for occupations that do not presently require a university degree, such as truck driving. Even in high-tech corridors like, concern is spreading about a future in which a sizable percentage of adults have little chance of sustaining gainful employment. As the example of Sweden suggests, however, the transition to a more automated future need not inspire panic, if there is sufficient political will to promote the retraining of workers whose positions are being rendered obsolete.Lights-out manufacturing.

Main article:Lights-out manufacturing is a production system with no human workers, to eliminate labor costs.Lights out manufacturing grew in popularity in the U.S. When General Motors in 1982 implemented humans 'hands-off' manufacturing in order to 'replace risk-averse bureaucracy with automation and robots'. However, the factory never reached full 'lights out' status.The expansion of lights out manufacturing requires:. Reliability of equipment. Long-term mechanic capabilities.

Planned preventive maintenance. Commitment from the staffHealth and environment. This section possibly contains. Please by the claims made and adding. Statements consisting only of original research should be removed. ( March 2018) The costs of automation to the environment are different depending on the technology, product or engine automated. There are automated engines that consume more energy resources from the Earth in comparison with previous engines and vice versa.

Hazardous operations, such as, the manufacturing of, and all forms of, were always early contenders for automation. – The automation of vehicles could prove to have a substantial impact on the environment, although the nature of this impact could be beneficial or harmful depending on several factors. Because are much less likely to get into accidents compared to human-driven vehicles, some precautions built into current models (such as or ) would not be required for self-driving versions. Removing these safety features would also significantly reduce the weight of the vehicle, thus increasing and reducing emissions per mile.

Self-driving vehicles are also more precise with regard to acceleration and breaking, and this could contribute to reduced emissions. Self-driving cars could also potentially utilize fuel-efficient features such as route mapping that is able to calculate and take the most efficient routes. Despite this potential to reduce emissions, some researchers theorize that an increase of production of self-driving cars could lead to a boom of vehicle ownership and use. This boom could potentially negate any environmental benefits of self-driving cars if a large enough number of people begin driving personal vehicles more frequently.Automation of homes and home appliances is also thought to impact the environment, but the benefits of these features are also questioned.

A study of energy consumption of automated homes in Finland showed that could reduce energy consumption by monitoring levels of consumption in different areas of the home and adjusting consumption to reduce energy leaks (such as automatically reducing consumption during the nighttime when activity is low). This study, along with others, indicated that the smart home's ability to monitor and adjust consumption levels would reduce unnecessary energy usage. However, new research suggests that smart homes might not be as efficient as non-automated homes. A more recent study has indicated that, while monitoring and adjusting consumption levels does decrease unnecessary energy use, this process requires monitoring systems that also consume a significant amount of energy. This study suggested that the energy required to run these systems is so much so that it negates any benefits of the systems themselves, resulting in little to no ecological benefit. Convertibility and. This section does not any.

Unsourced material may be challenged and.Find sources: – ( May 2019) Another major shift in automation is the increased demand for flexibility and convertibility in manufacturing processes. Manufacturers are increasingly demanding the ability to easily switch from manufacturing Product A to manufacturing Product B without having to completely rebuild the. Flexibility and distributed processes have led to the introduction of with Natural Features Navigation.Digital electronics helped too. Former analog-based instrumentation was replaced by digital equivalents which can be more accurate and flexible, and offer greater scope for more sophisticated configuration, parametrization, and operation. This was accompanied by the revolution which provided a networked (i.e. A single cable) means of communicating between control systems and field level instrumentation, eliminating hard-wiring.plants adopted these technologies fast.

The more conservative process industries with their longer plant life cycles have been slower to adopt and analog-based measurement and control still dominates. The growing use of on the factory floor is pushing these trends still further, enabling manufacturing plants to be integrated more tightly within the enterprise, via the internet if necessary. Global competition has also increased demand for.Automation tools Engineers can now have over automated devices. The result has been a rapidly expanding range of applications and human activities. (or CAx) now serve as the basis for mathematical and organizational tools used to create complex systems.

Notable examples of CAx include (CAD software) and (CAM software). The improved design, analysis, and manufacture of products enabled by CAx has been beneficial for industry., together with and, can assist in the design, implementation, and monitoring of control systems. One example of an is a (PLC).

PLCs are specialized hardened computers which are frequently used to synchronize the flow of inputs from (physical) and events with the flow of outputs to actuators and events. An on a website, with an for enhanced.(HMI) or (CHI), formerly known as man-machine interfaces, are usually employed to communicate with PLCs and other computers. Service personnel who monitor and control through HMIs can be called by different names. In industrial process and manufacturing environments, they are called operators or something similar. In boiler houses and central utilities departments they are called stationary engineers.Different types of automation tools exist:.

ANN –. DCS –.

HMI –. SCADA –. PLC –.Host simulation software (HSS) is a commonly used testing tool that is used to test the equipment software.

HSS is used to test equipment performance with respect to factory automation standards (timeouts, response time, processing time). Limitations to automation. This section does not any. Unsourced material may be challenged and.Find sources: – ( May 2019). Current technology is unable to automate all the desired tasks. Many operations using automation have large amounts of invested capital and produce high volumes of product, making malfunctions extremely costly and potentially hazardous. Therefore, some personnel are needed to ensure that the entire system functions properly and that safety and product quality are maintained.

As a process becomes increasingly automated, there is less and less labor to be saved or quality improvement to be gained. This is an example of both and the. As more and more processes become automated, there are fewer remaining non-automated processes. This is an example of the exhaustion of opportunities.

New technological paradigms may, however, set new limits that surpass the previous limits.Current limitations. This section does not any. Unsourced material may be challenged and.Find sources: – ( May 2019) Many roles for humans in industrial processes presently lie beyond the scope of automation.

Human-level, and language production ability are well beyond the capabilities of modern mechanical and computer systems (but see ). Tasks requiring subjective assessment or synthesis of complex sensory data, such as scents and sounds, as well as high-level tasks such as strategic planning, currently require human expertise. In many cases, the use of humans is more cost-effective than mechanical approaches even where the automation of industrial tasks is possible. Overcoming these obstacles is a theorized path to economics.Paradox of automation The of automation says that the more efficient the automated system, the more crucial the human contribution of the operators.

Humans are less involved, but their involvement becomes more critical., a cognitive psychologist, identified these issues notably in her widely cited paper 'Ironies of Automation.' If an automated system has an error, it will multiply that error until it is fixed or shut down.

This is where human operators come in.A fatal example of this was, where a failure of automation put the pilots into a manual situation they were not prepared for. Cognitive automation Cognitive automation, as a subset of, is an emerging genus of automation enabled. Its primary concern is the automation of clerical tasks and workflows that consist of structuring.Cognitive automation relies on multiple disciplines: natural language processing, real-time computing, machine learning algorithms, big data analytics, and evidence-based learning. According to, cognitive automation enables the replication of human tasks and judgment 'at rapid speeds and considerable scale'.Such tasks include:.

Document redaction. Data extraction and document synthesis / reporting. Contract management. Natural language search.

Customer, employee, and stakeholder onboarding. Manual activities and verifications. Follow up and email communicationsRecent and emerging applications. Main article:The food retail industry has started to apply automation to the ordering process; has introduced touch screen ordering and payment systems in many of its restaurants, reducing the need for as many cashier employees. Has introduced fully automated cafe retail locations. Some Cafes and restaurants have utilized mobile and tablet ' to make the ordering process more efficient by customers ordering and paying on their device.

Some restaurants have automated food delivery to customers tables using a. The use of is sometimes employed to replace.Stores. A soft drink in Japan, example of automated retailMany and even smaller stores are rapidly introducing systems reducing the need for employing checkout workers.

In the United States, the retail industry employs 15.9 million people as of 2017 (around 1 in 9 Americans in the workforce). Globally, an estimated 192 million workers could be affected by automation according to research by.could be considered a form of automated retail as the payment and checkout are through an automated system, with the share of online retail accounting jumping from 5.1% in 2011 to 8.3% in 2016. However, two-thirds of books, music, and films are now purchased online. In addition, automation and online shopping could reduce demands for shopping malls, and retail property, which in America is currently estimated to account for 31% of all commercial property or around 7 billion square feet.

Amazon has gained much of the growth in recent years for online shopping, accounting for half of the growth in online retail in 2016. Other forms of automation can also be an integral part of online shopping, for example, the deployment of automated warehouse robotics such as that applied by using.Automated mining. Main article:Automated mining involves the removal of human labor from the process. The is currently in the transition towards automation. Currently, it can still require a large amount of, particularly in the where labor costs are low so there is less incentive for increasing efficiency through automation.Automated video surveillance The Defense Advanced Research Projects Agency started the research and development of automated visual and monitoring (VSAM) program, between 1997 and 1999, and airborne video surveillance (AVS) programs, from 1998 to 2002.

Currently, there is a major effort underway in the vision community to develop a fully automated system. Automated video surveillance monitors people and vehicles in real time within a busy environment. Existing automated surveillance systems are based on the environment they are primarily designed to observe, i.e., indoor, outdoor or airborne, the number of sensors that the automated system can handle and the mobility of sensor, i.e., stationary camera vs. Mobile camera. The purpose of a surveillance system is to record properties and trajectories of objects in a given area, generate warnings or notify designated authority in case of occurrence of particular events.

Automated highway systems. Main article:As demands for safety and mobility have grown and technological possibilities have multiplied, interest in automation has grown. Seeking to accelerate the development and introduction of fully automated vehicles and highways, the authorized more than $650 million over six years for (ITS) and demonstration projects in the 1991 (ISTEA). Congress legislated in ISTEA that 'the shall develop an automated highway and vehicle prototype from which future fully automated intelligent vehicle-highway systems can be developed. Such development shall include research in human factors to ensure the success of the man-machine relationship. The goal of this program is to have the first fully automated highway roadway or an automated test track in operation by 1997. This system shall accommodate installation of equipment in new and existing motor vehicles.'

ISTEA 1991, part B, Section 6054(b).Full automation commonly defined as requiring no control or very limited control by the driver; such automation would be accomplished through a combination of sensor, computer, and communications systems in vehicles and along the roadway. Fully automated driving would, in theory, allow closer vehicle spacing and higher speeds, which could enhance traffic capacity in places where additional road building is physically impossible, politically unacceptable, or prohibitively expensive. Automated controls also might enhance road safety by reducing the opportunity for driver error, which causes a large share of motor vehicle crashes. Other potential benefits include improved air quality (as a result of more-efficient traffic flows), increased fuel economy, and spin-off technologies generated during research and development related to automated highway systems.

Automated waste management. Main article:Business process automation (BPA) is the technology-enabled automation of complex. It can help to streamline a business for simplicity, achieve digital transformation, increase service quality, improve service delivery or contain costs. BPA consists of integrating applications, restructuring labor resources and using software applications throughout the organization. (RPA or RPAAI for self-guided RPA 2.0) is an emerging field within BPA and uses.

BPAs can be implemented in a number of business areas including,. Home automation. Main article:Home automation (also called domotics) designates an emerging practice of increased automation of household appliances and features in residential dwellings, particularly through electronic means that allow for things impracticable, overly expensive or simply not possible in recent past decades. The rise in the usage of home automation solutions has taken a turn reflecting the increased dependency of people on such automation solutions. However, the increased comfort that gets added through these automation solutions is remarkable.

Laboratory automation. Automated laboratory instrumentAutomation is essential for many scientific and clinical applications. Therefore, automation has been extensively employed in laboratories. From as early as 1980 fully automated laboratories have already been working. However, automation has not become widespread in laboratories due to its high cost. This may change with the ability of integrating low-cost devices with standard laboratory equipment. Are common devices used in laboratory automation.Logistics automation.

Main article: Industrial automation Industrial automation deals primarily with the automation of manufacturing, quality control and material handling processes. General purpose controllers for industrial processes include Programmable logic controllers, stand-alone I/O modules, and computers. Industrial automation is to replace the decision making of humans and manual command-response activities with the use of mechanized equipment and logical programming commands. One trend is increased use of to provide automatic inspection and robot guidance functions, another is a continuing increase in the use of robots. Industrial automation is simply required in industries.Energy efficiency in industrial processes has become a higher priority. Hollow knight guide.

Semiconductor companies like Infineon Technologies are offering 8-bit micro-controller applications for example found in motor controls, general purpose pumps, fans, and ebikes to reduce energy consumption and thus increase efficiency. See also: and Industrial Automation and Industry 4.0 The rise of industrial automation is directly tied to the “”, which is better known now as Industry 4.0. Originating from Germany, Industry 4.0 encompasses numerous devices, concepts, and machines. It, along with the advancement of the (formally known as the IoT or IIoT) which is 'Internet of Things is a seamless integration of diverse physical objects in the Internet through a virtual representation'. These new revolutionary advancements have drawn attention to the world of automation in an entirely new light and shown ways for it to grow to increase productivity and efficiency in machinery and manufacturing facilities. Industry 4.0 works with the IIoT and software/hardware to connect in a way that (through communication technologies) add enhancements and improve manufacturing processes.

Being able to create smarter, safer, and more advanced manufacturing is now possible with these new technologies. It opens up a manufacturing platform that is more reliable, consistent, and efficient than before. Implementation of systems such as is an example of software that takes place in Industrial Automation today. SCADA is a supervisory data collection software, just one of the many used in Industrial Automation.

Industry 4.0 vastly covers many areas in manufacturing and will continue to do so as time goes on. Automated milling machinesis a sub-branch in the industrial automation that aids in various manufacturing processes. Such manufacturing processes include; machining, welding, painting, assembling and material handling to name a few. Industrial robots utilizes various mechanical, electrical as well as software systems to allow for high precision, accuracy and speed that far exceeds any human performance. The birth of industrial robot came shortly after World War II as the United States saw the need for a quicker way to produce industrial and consumer goods.

Servos, digital logic and solid-state electronics allowed engineers to build better and faster systems and overtime these systems were improved and revised to the point where a single robot is capable of running 24 hours a day with little or no maintenance. In 1997, there were 700,000 industrial robots in use, the number has risen to 1.8M in 2017 In recent years, (AI) with are also used in creating an automatic labelling solution, using robotic arms as the automatic label applicator, and AI for learning and detecting the products to be labelled. Programmable Logic Controllers Industrial automation incorporates programmable logic controllers in the manufacturing process.

Programmable logic controllers (PLCs) use a processing system which allows for variation of controls of inputs and outputs using simple programming. PLCs make use of programmable memory, storing instructions and functions like logic, sequencing, timing, counting, etc. Using a logic-based language, a PLC can receive a variety of inputs and return a variety of logical outputs, the input devices being sensors and output devices being motors, valves, etc. PLCs are similar to computers, however, while computers are optimized for calculations, PLCs are optimized for control task and use in industrial environments. They are built so that only basic logic-based programming knowledge is needed and to handle vibrations, high temperatures, humidity, and noise. The greatest advantage PLCs offer is their flexibility. With the same basic controllers, a PLC can operate a range of different control systems.

PLCs make it unnecessary to rewire a system to change the control system. This flexibility leads to a cost-effective system for complex and varied control systems. Siemens Simatic S7-400 system in a rack, left-to-right: power supply unit (PSU), CPU, interface module (IM) and communication processor (CP).PLCs can range from small 'building brick' devices with tens of I/O in a housing integral with the processor, to large rack-mounted modular devices with a count of thousands of I/O, and which are often networked to other PLC and systems.They can be designed for multiple arrangements of digital and analog inputs and outputs (I/O), extended temperature ranges, immunity to, and resistance to vibration and impact.

Automation definition economics

Programs to control machine operation are typically stored in battery-backed-up or.It was from the automotive industry in the USA that the PLC was born. Before the PLC, control, sequencing, and safety interlock logic for manufacturing automobiles was mainly composed of, and dedicated closed-loop controllers.

Since these could number in the hundreds or even thousands, the process for updating such facilities for the yearly model was very time-consuming and expensive, as needed to individually rewire the relays to change their operational characteristics.When digital computers became available, being general-purpose programmable devices, they were soon applied to control sequential and combinatorial logic in industrial processes. However, these early computers required specialist programmers and stringent operating environmental control for temperature, cleanliness, and power quality. To meet these challenges this the PLC was developed with several key attributes. It would tolerate the shop-floor environment, it would support discrete (bit-form) input and output in an easily extensible manner, it would not require years of training to use, and it would permit its operation to be monitored.

Since many industrial processes have timescales easily addressed by millisecond response times, modern (fast, small, reliable) electronics greatly facilitate building reliable controllers, and performance could be traded off for reliability. Agent-assisted automation. Main article:Agent-assisted automation refers to automation used by call center agents to handle customer inquiries. There are two basic types: desktop automation and automated voice solutions. Desktop automation refers to software programming that makes it easier for the call center agent to work across multiple desktop tools.

The automation would take the information entered into one tool and populate it across the others so it did not have to be entered more than once, for example. Automated voice solutions allow the agents to remain on the line while disclosures and other important information is provided to customers in the form of pre-recorded audio files. Specialized applications of these automated voice solutions enable the agents to process credit cards without ever seeing or hearing the credit card numbers or CVV codesThe key benefit of agent-assisted automation is compliance and error-proofing. Agents are sometimes not fully trained or they forget or ignore key steps in the process. The use of automation ensures that what is supposed to happen on the call actually does, every time.Relationship to unemployment.

Main article:Research by and Michael Osborne of the argued that employees engaged in 'tasks following well-defined procedures that can easily be performed by sophisticated algorithms' are at risk of displacement, and 47 percent of jobs in the US were at risk. The study, released as a working paper in 2013 and published in 2017, predicted that automation would put low-paid physical occupations most at risk, by surveying a group of colleagues on their opinions. However, according to a study published in in 2015 the impact of computerization in most cases is not the replacement of employees but automation of portions of the tasks they perform. The methodology of the McKinsey study has been heavily criticized for being intransparent and relying on subjective assessments. The methodology of Frey and Osborne has been subjected to criticism, as lacking evidence, historical awareness, or credible methodology. In addition the OECD, found that across the 21 OECD countries, 9% of jobs are automatable.The Obama White House has pointed out that every 3 months 'about 6 percent of jobs in the economy are destroyed by shrinking or closing businesses, while a slightly larger percentage of jobs are added'. A recent MIT economics study of automation in the United States from 1990 to 2007 found that there may be a negative impact on employment and wages when robots are introduced to an industry.

When one robot is added per one thousand workers, the employment to population ratio decreases between 0.18–0.34 percentages and wages are reduced by 0.25–0.5 percentage points. During the time period studied, the US did not have many robots in the economy which restricts the impact of automation. However, automation is expected to triple (conservative estimate) or quadruple (a generous estimate) leading these numbers to become substantially higher.Based on a formula by, an economist at Toulouse 1 University, the demand for unskilled human capital declines at a slower rate than the demand for skilled human capital increases.

In the long run and for society as a whole it has led to cheaper products, and new industries forming (i.e., robotics industries, computer industries, design industries). These new industries provide many high salary skill-based jobs to the economy. By 2030, between 3 and 14 percent of the global workforce will be forced to switch job categories due to automation eliminating jobs in an entire sector.

While the number of jobs lost to automation is often offset by jobs gained from technological advances, the same type of job loss is not the same one replaced and that leading to increasing unemployment in the lower-middle class. This occurs largely in the US and developed countries where technological advances contribute to higher demand for highly skilled labor but demand for middle-wage labor continues to fall. Economists call this trend 'income polarization' where unskilled labor wages are driven down and skilled labor is driven up and it is predicted to continue in developed economies.Unemployment is becoming a problem in the United States due to the exponential growth rate of automation and technology. According to Kim, Kim, and Lee (2017), 'A seminal study by Frey and Osborne in 2013 predicted that 47% of the 702 examined occupations in the United States faced a high risk of decreased employment rate within the next 10–25 years as a result of computerization'. As many jobs are becoming obsolete, which is causing job displacement, one possible solution would be for the government to assist with a universal basic income (UBI) program. UBI would be a guaranteed, non-taxed income of around $1000 dollars per month, paid to all U.S.

Citizens over the age of 21. UBI would help those who are displaced, take on jobs that pay less money and still afford to get. It would also give those that are employed with jobs that are likely to be replaced by automation and technology, extra money to spend on education and training on new demanding employment skills. UBI however, should be seen as a short-term solution because it doesn't fully address the issue of income inequality which will be exacerbated by job displacement.See also. Autor, David H. Journal of Economic Perspectives. 29 (3): 3.:.:.

Retrieved 16 January 2018. Bennett, S. A History of Control Engineering 1930-1955. London: Peter Peregrinus Ltd.

On behalf of the Institution of Electrical Engineers. Dunlop, John T. (ed.) (1962), Automation and Technological Change: Report of the Twenty-first American Assembly, Englewood Cliffs, NJ, USA: Prentice-Hall. CS1 maint: extra text: authors list. E.

McGaughey, 'Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy' (2018). Ouellette, Robert (1983), Automation Impacts on Industry, Ann Arbor, MI, USA: Ann Arbor Science Publishers,.

Trevathan, Vernon L., ed. (2006), (2nd ed.), Research Triangle Park, NC, USA: International Society of Automation, archived from on 4 July 2008.

Frohm, Jorgen (2008), Chalmers University of Technology,. Executive Office of the President, Artificial Intelligence, Automation and the Economy.

Etymology +‎ or +‎; coined by a Ford Executive Vice President, Delmar S. Harder, in the 1940s.Noun automation ( and, plural ). The act or process of converting the controlling of a or to a more system, such as or controls. 2012 October 23, David Leonhardt, ',' New York Times (retrieved 24 October 2012):The presidential campaign has been more focused on Bain Capital and an “apology tour” than on the challenges created by globalization and automation.Synonyms.

/Related terms. /.Translations.